Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Eur J Med Chem ; 271: 116425, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38636129

RESUMO

Phosphatidylinositol 3-kinase (PI3K) is one of the most attractive therapeutic targets for cervical cancer treatment. In this study, we designed and synthesized a series of benzimidazole derivatives and evaluated their anti-cervical cancer activity. Compound 4r exhibited strong antiproliferative activity in different cervical cancer cell lines HeLa, SiHa and Ca Ski, and relative lower cytotoxicity to normal hepatic and renal cell lines LO2 and HEK-293t (IC50 values were at 21.08 µM and 23.96 µM respectively). Its IC50 value was at 3.38 µM to the SiHa cells. Further mechanistic studies revealed that 4r induced apoptosis, arrested cell cycle in G2/M phase, suppressed PI3K/Akt/mTOR pathway and inhibit the polymerization of tubulin. Molecular docking study suggested that 4r formed key H-bonds action with PI3Kα (PDB ID:8EXU) and tubulin (PDB ID:1SA0). Zebrafish acute toxicity experiments showed that high concentrations of 4r did not cause death or malformation of zebrafish embryos. All these results demonstrated that 4r would be a promising lead candidate for further development of novel PI3K and tubulin dual inhibitors in cervical cancer treatment.

2.
BMC Oral Health ; 24(1): 80, 2024 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-38218801

RESUMO

BACKGROUND: The aim of this study is to conduct a comparative evaluation of different designs of clear aligners and examine the disparities between clear aligners and fixed appliances. METHODS: 3D digital models were created, consisting of a maxillary dentition without first premolars, maxilla, periodontal ligaments, attachments, micro-implant, 3D printed lingual retractor, brackets, archwire and clear aligner. The study involved the creation of five design models for clear aligner maxillary anterior internal retraction and one design model for fixed appliance maxillary anterior internal retraction, which were subsequently subjected to finite element analysis. These design models included: (1) Model C0 Control, (2) Model C1 Posterior Micro-implant, (3) Model C2 Anterior Micro-implant, (4) Model C3 Palatal Plate, (5) Model C4 Lingual Retractor, and (6) Model F0 Fixed Appliance. RESULTS: In the clear aligner models, a consistent pattern of tooth movement was observed. Notably, among all tested models, the modified clear aligner Model C3 exhibited the smallest differences in sagittal displacement of the crown-root of the central incisor, vertical displacement of the central incisor, sagittal displacement of the second premolar and second molar, as well as vertical displacement of posterior teeth. However, distinct variations in tooth movement trends were observed between the clear aligner models and the fixed appliance model. Furthermore, compared to the fixed appliance model, significant increases in tooth displacement were achieved with the use of clear aligner models. CONCLUSIONS: In the clear aligner models, the movement trend of the teeth remained consistent, but there were variations in the amount of tooth displacement. Overall, the Model C3 exhibited better torque control and provided greater protection for posterior anchorage teeth compared to the other four clear aligner models. On the other hand, the fixed appliance model provides superior anterior torque control and better protection of the posterior anchorage teeth compared to clear aligner models. The clear aligner approach and the fixed appliance approach still exhibit a disparity; nevertheless, this study offers a developmental direction and establishes a theoretical foundation for future non-invasive, aesthetically pleasing, comfortable, and efficient modalities of clear aligner treatment.


Assuntos
Procedimentos de Ancoragem Ortodôntica , Aparelhos Ortodônticos Removíveis , Humanos , Incisivo , Análise de Elementos Finitos , Desenho de Aparelho Ortodôntico , Aparelhos Ortodônticos Fixos , Técnicas de Movimentação Dentária
3.
Brief Bioinform ; 24(5)2023 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-37529921

RESUMO

Single-cell RNA sequencing (scRNA-seq) has emerged as a powerful tool for uncovering cellular heterogeneity. However, the high costs associated with this technique have rendered it impractical for studying large patient cohorts. We introduce ENIGMA (Deconvolution based on Regularized Matrix Completion), a method that addresses this limitation through accurately deconvoluting bulk tissue RNA-seq data into a readout with cell-type resolution by leveraging information from scRNA-seq data. By employing a matrix completion strategy, ENIGMA minimizes the distance between the mixture transcriptome obtained with bulk sequencing and a weighted combination of cell-type-specific expression. This allows the quantification of cell-type proportions and reconstruction of cell-type-specific transcriptomes. To validate its performance, ENIGMA was tested on both simulated and real datasets, including disease-related tissues, demonstrating its ability in uncovering novel biological insights.


Assuntos
Perfilação da Expressão Gênica , Transcriptoma , Humanos , Perfilação da Expressão Gênica/métodos , Software , RNA-Seq/métodos , Análise de Sequência de RNA/métodos
4.
Commun Biol ; 6(1): 613, 2023 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-37286708

RESUMO

HMG protein Tox4 is a regulator of PP1 phosphatases with unknown function in development. Here we show that Tox4 conditional knockout in mice reduces thymic cellularity, partially blocks T cell development, and decreases ratio of CD8 to CD4 through decreasing proliferation and increasing apoptosis of CD8 cells. In addition, single-cell RNA-seq discovered that Tox4 loss also impairs proliferation of the fast-proliferating double positive (DP) blast population within DP cells in part due to downregulation of genes critical for proliferation, notably Cdk1. Moreover, genes with high and low expression level are more dependent on Tox4 than genes with medium expression level. Mechanistically, Tox4 may facilitate transcriptional reinitiation and restrict elongation in a dephosphorylation-dependent manner, a mechanism that is conserved between mouse and human. These results provide insights into the role of TOX4 in development and establish it as an evolutionarily conserved regulator of transcriptional elongation and reinitiation.


Assuntos
Linfócitos T CD8-Positivos , Timo , Animais , Camundongos , Humanos , Diferenciação Celular/genética
5.
Nat Commun ; 14(1): 2499, 2023 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-37120627

RESUMO

Mammalian spermatogenesis shows prominent chromatin and transcriptomic switches in germ cells, but it is unclear how such dynamics are controlled. Here we identify RNA helicase DDX43 as an essential regulator of the chromatin remodeling process during spermiogenesis. Testis-specific Ddx43 knockout mice show male infertility with defective histone-to-protamine replacement and post-meiotic chromatin condensation defects. The loss of its ATP hydrolysis activity by a missense mutation replicates the infertility phenotype in global Ddx43 knockout mice. Single-cell RNA sequencing analyses of germ cells depleted of Ddx43 or expressing the Ddx43 ATPase-dead mutant reveals that DDX43 regulates dynamic RNA regulatory processes that underlie spermatid chromatin remodeling and differentiation. Transcriptomic profiling focusing on early-stage spermatids combined with enhanced crosslinking immunoprecipitation and sequencing further identifies Elfn2 as DDX43-targeted hub gene. These findings illustrate an essential role for DDX43 in spermiogenesis and highlight the single-cell-based strategy to dissect cell-state-specific regulation of male germline development.


Assuntos
Montagem e Desmontagem da Cromatina , RNA Helicases DEAD-box , Análise da Expressão Gênica de Célula Única , Animais , Masculino , Camundongos , Cromatina , Camundongos Knockout , Proteínas de Ligação a RNA/genética , Espermatogênese/genética , RNA Helicases DEAD-box/genética
6.
Front Bioeng Biotechnol ; 10: 1004223, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36277381

RESUMO

Purpose: The objective of this study was to evaluate and compare the biomechanical differences between clear aligner and fixed appliance in the traction of labially impacted canines based on 3D finite element analysis. Methods: A series of patient-oriented finite element models were constructed, including a maxillary dentition with a right labially canine, maxilla, periodontal ligaments, traction attachments, and clear aligners. The two most common clinical scenarios were investigated: Scenario A: impacted canine (distal) and Scenario B: impacted canine (mesial). For each clinical scenario, three traction models with clear aligners and one fixed appliance model were established. Results: In all four models, the impacted canines exhibited similar initial displacement tendencies of mesially rotated in Scenario A and distally rotated in Scenario B, and with small differences in periodontal ligament stress magnitude. However, the sum of the periodontal ligament stresses of the anchorage teeth in the clear aligner mode was in the range of 56.28-76.21 kPa and in the fixed appliance mode was in the range of 6.61-7.22 kPa. The maximum value of initial displacement of the anchorage teeth in the clear aligner mode was in the range of 13.71-19.72 µm, while in the fixed appliance mode was 3.10-3.92 µm. Conclusion: For impacted canines, clear aligner mode and fixed appliance mode have little difference in biomechanical effect. However, the anchorage teeth in the clear aligner mode endure higher stress and show a more pronounced displacement tendency. In addition, the biomechanical effects of different clear aligner traction models are various but not obvious.

7.
Genome Res ; 31(11): 2095-2106, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34475268

RESUMO

Intronic polyadenylation (IpA) usually leads to changes in the coding region of an mRNA, and its implication in diseases has been recognized, although at its very beginning status. Conveniently and accurately identifying IpA is of great importance for further evaluating its biological significance. Here, we developed IPAFinder, a bioinformatic method for the de novo identification of intronic poly(A) sites and their dynamic changes from standard RNA-seq data. Applying IPAFinder to 256 pan-cancer tumor/normal pairs across six tumor types, we discovered 490 recurrent dynamically changed IpA events, some of which are novel and derived from cancer-associated genes such as TSC1, SPERD2, and CCND2 Furthermore, IPAFinder revealed that IpA could be regulated by factors related to splicing and m6A modification. In summary, IPAFinder enables the global discovery and characterization of biologically regulated IpA with standard RNA-seq data and should reveal the biological significance of IpA in various processes.


Assuntos
Neoplasias , Poliadenilação , Humanos , Íntrons/genética , Neoplasias/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA-Seq
8.
Nucleic Acids Res ; 49(18): 10369-10381, 2021 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-34508351

RESUMO

Somatic single nucleotide variants (SNVs) in cancer genome affect gene expression through various mechanisms depending on their genomic location. While somatic SNVs near canonical splice sites have been reported to cause abnormal splicing of cancer-related genes, whether these SNVs can affect gene expression through other mechanisms remains an open question. Here, we analyzed RNA sequencing and exome data from 4,998 cancer patients covering ten cancer types and identified 152 somatic SNVs near splice sites that were associated with abnormal intronic polyadenylation (IPA). IPA-associated somatic variants favored the localization near the donor splice sites compared to the acceptor splice sites. A proportion of SNV-associated IPA events overlapped with premature cleavage and polyadenylation events triggered by U1 small nuclear ribonucleoproteins (snRNP) inhibition. GC content, intron length and polyadenylation signal were three genomic features that differentiated between SNV-associated IPA and intron retention. Notably, IPA-associated SNVs were enriched in tumor suppressor genes (TSGs), including the well-known TSGs such as PTEN and CDH1 with recurrent SNV-associated IPA events. Minigene assay confirmed that SNVs from PTEN, CDH1, VEGFA, GRHL2, CUL3 and WWC2 could lead to IPA. This work reveals that IPA acts as a novel mechanism explaining the functional consequence of somatic SNVs in human cancer.


Assuntos
Neoplasias/genética , Polimorfismo de Nucleotídeo Único , RNA , Bases de Dados Genéticas , Humanos , Íntrons , Poliadenilação
9.
Nucleic Acids Res ; 49(9): e54, 2021 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-33619563

RESUMO

With the tremendous increase of publicly available single-cell RNA-sequencing (scRNA-seq) datasets, bioinformatics methods based on gene co-expression network are becoming efficient tools for analyzing scRNA-seq data, improving cell type prediction accuracy and in turn facilitating biological discovery. However, the current methods are mainly based on overall co-expression correlation and overlook co-expression that exists in only a subset of cells, thus fail to discover certain rare cell types and sensitive to batch effect. Here, we developed independent component analysis-based gene co-expression network inference (ICAnet) that decomposed scRNA-seq data into a series of independent gene expression components and inferred co-expression modules, which improved cell clustering and rare cell-type discovery. ICAnet showed efficient performance for cell clustering and batch integration using scRNA-seq datasets spanning multiple cells/tissues/donors/library types. It works stably on datasets produced by different library construction strategies and with different sequencing depths and cell numbers. We demonstrated the capability of ICAnet to discover rare cell types in multiple independent scRNA-seq datasets from different sources. Importantly, the identified modules activated in acute myeloid leukemia scRNA-seq datasets have the potential to serve as new diagnostic markers. Thus, ICAnet is a competitive tool for cell clustering and biological interpretations of single-cell RNA-seq data analysis.


Assuntos
RNA-Seq/métodos , Análise de Célula Única/métodos , Animais , Encéfalo/metabolismo , Linhagem Celular , Análise por Conglomerados , Biologia Computacional/métodos , Redes Reguladoras de Genes , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/mortalidade , Camundongos , Oligodendroglia/classificação , Oligodendroglia/metabolismo , Prognóstico , Software
10.
BMC Plant Biol ; 20(1): 401, 2020 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-32867687

RESUMO

BACKGROUND: C2H2 zinc finger proteins (C2H2 ZFPs) play vital roles in shaping many aspects of plant growth and adaptation to the environment. Plant genomes harbor hundreds of C2H2 ZFPs, which compose one of the most important and largest transcription factor families in higher plants. Although the C2H2 ZFP gene family has been reported in several plant species, it has not been described in the model leguminous species Medicago truncatula. RESULTS: In this study, we identified 218 C2H2 type ZFPs with 337 individual C2H2 motifs in M. truncatula. We showed that the high rate of local gene duplication has significantly contributed to the expansion of the C2H2 gene family in M. truncatula. The identified ZFPs exhibit high variation in motif arrangement and expression pattern, suggesting that the short C2H2 zinc finger motif has been adopted as a scaffold by numerous transcription factors with different functions to recognize cis-elements. By analyzing the public expression datasets and quantitative RT-PCR (qRT-PCR), we identified several C2H2 ZFPs that are specifically expressed in certain tissues, such as the nodule, seed, and flower. CONCLUSION: Our genome-wide work revealed an expanded C2H2 ZFP gene family in an important legume M. truncatula, and provides new insights into the diversification and expansion of C2H2 ZFPs in higher plants.


Assuntos
Dedos de Zinco CYS2-HIS2/genética , Duplicação Gênica , Genes de Plantas/genética , Estudo de Associação Genômica Ampla , Medicago truncatula/genética , Família Multigênica
11.
Mol Cancer ; 18(1): 106, 2019 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-31179925

RESUMO

BACKGROUND: Cancer cells become immortalized through telomere maintenance mechanisms, such as telomerase reverse transcriptase (TERT) activation. In addition to maintaining telomere length, TERT activates manifold cell survival signaling pathways. However, telomerase-associated gene signatures in cancer remain elusive. METHODS: We performed a systematic analysis of TERT high (TERThigh) and low (TERTlow) cancers using multidimensional data from The Cancer Genome Atlas (TCGA). Multidimensional data were analyzed by propensity score matching weight algorithm. Coexpression networks were constructed by weight gene coexpression network analysis (WGCNA). Random forest classifiers were generated to identify cancer subtypes. RESULTS: The TERThigh-specific mRNA expression signature is associated with cell cycle-related coexpression modules across cancer types. Experimental screening of hub genes in the cell cycle module suggested TPX2 and EXO1 as potential regulators of telomerase activity and cell survival. MiRNA analysis revealed that the TERThigh-specific miR-17-92 cluster can target biological processes enriched in TERTlow cancer and that its expression is negatively correlated with the tumor/normal telomere length ratio. Intriguingly, TERThigh cancers tend to have mutations in extracellular matrix organization genes and amplify MAPK signaling. By mining the clinical actionable gene database, we uncovered a number of TERThigh-specific somatic mutations, amplifications and high expression genes containing therapeutic targets. Finally, a random forest classifier integrating telomerase-associated multi-omics signatures identifies two cancer subtypes showed profound differences in telomerase activity and patient survival. CONCLUSIONS: In summary, our results depict a telomerase-associated molecular landscape in cancers and provide therapeutic opportunities for cancer treatment.


Assuntos
Perfilação da Expressão Gênica/métodos , Redes Reguladoras de Genes , MicroRNAs/genética , Neoplasias/genética , Telomerase/metabolismo , Proteínas de Ciclo Celular/genética , Linhagem Celular Tumoral , Enzimas Reparadoras do DNA/genética , Exodesoxirribonucleases/genética , Amplificação de Genes , Regulação Neoplásica da Expressão Gênica , Células Hep G2 , Humanos , Proteínas Associadas aos Microtúbulos/genética , Mutação , Neoplasias/enzimologia , Regiões Promotoras Genéticas , Pontuação de Propensão
12.
Cell Death Differ ; 24(10): 1672-1680, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28622295

RESUMO

Although much is known about transcriptional networks that control embryonic stem cell (ESC) self-renewal and differentiation, the metabolic regulation of ESC is less clear. Autophagy is a catabolic process that is activated under both stress and normal conditions to degrade damaged organelles and aggregated proteins, and thus plays pivotal roles in somatic and adult stem cell function. However, if and how ESCs harness autophagy to regulate stemness remains largely unknown. Recently, we have defined that autophagy is essential for mitochondrial homeostasis regulation in pluripotency acquirement and maintenance. Here we identified high autophagic flux as an essential mechanism to maintain ESC identity. We show that mouse ESCs exhibit a high autophagic flux that is maintained by coordinating expression of autophagy core molecular machinery genes through FOXO1, a forkhead family transcription factor. Tapering autophagic flux by manipulating either Atg3 or Foxo1 expression compromised ESC self-renewal, pluripotency, and differentiation that could be restored by gain of wild-type but not function-deficient Atg3 or Foxo1 mutants, respectively. Our results define a newly recognized role of autophagic flux in mouse ESC identity maintenance that links cellular catabolism to ESC fate regulation.


Assuntos
Autofagia/genética , Diferenciação Celular/genética , Proteína Forkhead Box O1/genética , Células-Tronco Embrionárias Murinas , Animais , Linhagem Celular , Autorrenovação Celular/genética , Regulação da Expressão Gênica/genética , Redes Reguladoras de Genes/genética , Camundongos , Células-Tronco Embrionárias Murinas/citologia , Células-Tronco Embrionárias Murinas/metabolismo , Células-Tronco Pluripotentes/citologia
13.
Autophagy ; 12(11): 2000-2008, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27575019

RESUMO

Pluripotent stem cells, including induced pluripotent and embryonic stem cells (ESCs), have less developed mitochondria than somatic cells and, therefore, rely more heavily on glycolysis for energy production. 1-3 However, how mitochondrial homeostasis matches the demands of nuclear reprogramming and regulates pluripotency in ESCs is largely unknown. Here, we identified ATG3-dependent autophagy as an executor for both mitochondrial remodeling during somatic cell reprogramming and mitochondrial homeostasis regulation in ESCs. Dysfunctional autophagy by Atg3 deletion inhibited mitochondrial removal during pluripotency induction, resulting in decreased reprogramming efficiency and accumulation of abnormal mitochondria in established iPSCs. In Atg3 null mouse ESCs, accumulation of aberrant mitochondria was accompanied by enhanced ROS generation, defective ATP production and attenuated pluripotency gene expression, leading to abnormal self-renewal and differentiation. These defects were rescued by reacquisition of wild-type but not lipidation-deficient Atg3 expression. Taken together, our findings highlight a critical role of ATG3-dependent autophagy for mitochondrial homeostasis regulation in both pluripotency acquirement and maintenance.


Assuntos
Proteínas Relacionadas à Autofagia/metabolismo , Autofagia , Homeostase , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Mitocôndrias/metabolismo , Enzimas de Conjugação de Ubiquitina/metabolismo , Animais , Diferenciação Celular , Autorrenovação Celular , Reprogramação Celular , Fibroblastos/citologia , Fibroblastos/metabolismo , Camundongos , Mitocôndrias/ultraestrutura , Células-Tronco Embrionárias Murinas/citologia , Células-Tronco Embrionárias Murinas/metabolismo
14.
Sci China Life Sci ; 59(9): 950-7, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27233903

RESUMO

Multiple sclerosis (MS) is an autoimmune disease of the central nervous system (CNS), with focal T lymphocytic infiltration and damage of myelin and axons. The underlying mechanism of pathogenesis remains unclear and there are currently no effective treatments. The development of neural stem cell (NSC) transplantation provides a promising strategy to treat neurodegenerative disease. However, the limited availability of NSCs prevents their application in neural disease therapy. In this study, we generated NSCs from induced pluripotent stem cells (iPSCs) and transplanted these cells into mice with experimental autoimmune encephalomyelitis (EAE), a model of MS. The results showed that transplantation of iPSC-derived NSCs dramatically reduced T cell infiltration and ameliorated white matter damage in the treated EAE mice. Correspondingly, the disease symptom score was greatly decreased, and motor ability was dramatically rescued in the iPSC-NSC-treated EAE mice, indicating the effectiveness of using iPSC-NSCs to treat MS. Our study provides pre-clinical evidence to support the feasibility of treating MS by transplantation of iPSC-derived NSCs.


Assuntos
Diferenciação Celular , Encefalomielite Autoimune Experimental/terapia , Células-Tronco Pluripotentes Induzidas/citologia , Esclerose Múltipla/terapia , Células-Tronco Neurais/transplante , Transplante de Células-Tronco/métodos , Animais , Células Cultivadas , Modelos Animais de Doenças , Encefalomielite Autoimune Experimental/imunologia , Encefalomielite Autoimune Experimental/fisiopatologia , Estudos de Viabilidade , Humanos , Masculino , Camundongos Endogâmicos C57BL , Atividade Motora , Esclerose Múltipla/imunologia , Esclerose Múltipla/fisiopatologia , Células-Tronco Neurais/citologia , Linfócitos T/imunologia , Linfócitos T/metabolismo , Resultado do Tratamento
15.
Cell Discov ; 1: 15015, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-27462414

RESUMO

Whether physiologically induced pluripotent stem cell (iPSC)-derived organs are immunogenic and can be used for transplantation is unclear. Here, we generated iPSC-derived skin, islet, and heart representing three germ layers of the body through 4n complementation and evaluated their immunogenicity and therapeutic efficacy. Upon transplantation into recipient mice, iPSC-derived skin successfully survived and repaired local tissue wounds. In diabetic mouse models, explanted iPSC-derived islets effectively produced insulin and lowered blood glucose to basal levels. iPSC-derived heart grafts maintained normal beating for more than 3 months in syngeneic recipients. Importantly, no obvious immune rejection responses against iPSC-derived organs were detected long after transplantation. Our study not only demonstrates the fundamental immunogenicity and function of iPSC derivatives, but also provides preclinical evidence to support the feasibility of using iPSC-derived skin, islet, and heart for therapeutic use.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...